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Abstract—CAPTCHAs are challenges designed to distinguish
humans from automated bots. However, with the growing
capabilities of Automatic Speech Recognition (ASR) models,
these challenges are increasingly vulnerable to automated
resolution. In this paper, we evaluate the feasibility of
bypassing the audio versions of CAPTCHAs. We automate
the collection and transcription of Google audio CAPTCHAs
and compare the performance of multiple mmodels including
Google Speech-to-text, DeepSpeeach, Whisper, Azure Al
Speech, and Deepgram focusing on accuracy, speed, and
cost. The performance results highlight how easily audio
CAPTCHASs can be bypassed, in one second for the fastest
methods. We also discuss possible countermeasures that
could be deployed.

Index Terms—audio CAPTCHA, Automatic Speech Recog-
nition models

1. Introduction

Online platforms increasingly face the challenge of
automated abuse, ranging from spamming and scraping
to fraudulent account creation. This issue arises from the
widespread availability of sophisticated automated tools
capable of mimicking human behavior, making it essen-
tial to deploy robust mechanisms to distinguish between
human users and automated systems.

CAPTCHAs (Completely Automated Public Turing
tests to tell Computers and Humans Apart) are widely
used to prevent automated abuse online [I]. Visual
CAPTCHAs, the most common variant, typically require
users to identify objects or text in distorted images. They
leverage the cognitive and perceptual abilities of humans,
which surpass those of most automated systems, to block
bots from gaining unauthorized access to online resources.

Audio CAPTCHAs are alternatives to visual
CAPTCHAs that improve accessibility for users with
visual impairments. The audio version of CAPTCHAs
is still widely adopted, for instance, Google audio
reCAPTCHA v2 [2] is currently deployed on more than
200,000 websites globally, which includes 21% of the
top one million websites [3].

When cybercriminals manage to bypass different
forms of CAPTCHAs, they can deploy a wide range
of attacks such as credential stuffing, automated account
creation, and web scraping with minimal cost and ef-
fort, which enables large-scale fraud, spam dissemination,
and data harvesting, undermining the security of online
services. As a consequence, the analysis of CAPTCHA
robustness becomes crucial for cybersecurity experts.

At the same time, modern Al-powered transcription
models have demonstrated remarkable capabilities in rec-

ognizing speech under challenging conditions [4], [5].
Tools like Whisper and Google Speech-to-Text API ex-
hibit high accuracy, raising concerns about the resilience
of audio CAPTCHA systems. To evaluate this risk, this
paper investigates the feasibility of empirically bypassing
audio reCAPTCHA v2 with six state of the art AI-powered
transcription tools, using recent technologies improvement
and new models like Whisper. By leveraging them, we
explore the vulnerabilities in current audio CAPTCHA
designs and evaluate the potential for automated systems
to challenge their robustness.

In this paper, we conduct the first comparative eval-
uation of multiple cloud-based and local ASR models,
focusing on accuracy, speed, and cost. Our findings high-
light how easily security measures can be bypassed and
how quickly such implementations can be deployed using
various tools. We successfully solve CAPTCHASs in nearly
one second, while the challenges themselves typically last
around four seconds, at a cost of less than $0.01 per
attempt.

These results raise serious concerns, showing that
an attacker with minimal development skills and low
financial investment can effectively bypass CAPTCHAs at
scale. They also highlight the importance of countermea-
sures, like automatic bot recognition CAPTCHAs, such
as Google reCAPTCHA v3, which eliminates challenges
while still ensuring accessibility.

2. Background and Related Work

CAPTCHAs emerged as a response to the increasing
threat of automated bots exploiting online services [6].
The need for their improvement stems from the con-
stant advancement of machine learning and artificial in-
telligence techniques, which have progressively enhanced
the ability of automated systems to bypass traditional
CAPTCHAs [1], [7]—early CAPTCHAs relied on simple
distortions of text-based images, but adversarial attacks
and improvements in optical character recognition (OCR)
made them less secure [8]. Several studies explored the
security of CAPTCHAs and the evolving landscape of
attacks leveraging machine learning and artificial intel-
ligence [9], [10]. Prior research demonstrated the vulner-
ability of visual CAPTCHASs to deep learning-based OCR
systems [11].

Recent progress in deep learning Al models fur-
ther highlighted the potential for automating CAPTCHA-
solving tasks. Plesner et al. showed that deep learning
models trained on large datasets can transcribe and in-
terpret complex image patterns, effectively solving visual
reCAPTCHAV2 challenges [12].



While effective, visual CAPTCHAS raise accessibil-
ity challenges for users with visual impairments, which
led to the development of audio CAPTCHAs [13]. They
consist of distorted audio files containing sequences of
numbers, letters, or words, often embedded in background
noise or with altered pitch and tempo. Audio CAPTCHAs
are designed to be challenging for automated recognition
systems while remaining comprehensible to human users,
thereby providing an accessible alternative for individuals
who cannot solve visual CAPTCHAs.

Audio CAPTCHAs also evolved in response to ad-
vances in Automatic Speech Recognition (ASR) that im-
proved the possibility to decipher distorted audio chal-
lenges [14], [15]. To improve the robustness of au-
dio CAPTCHAs against automated abuses, Hossen and
Hei designed an audio adversarial CAPTCHA (aae-
CAPTCHA) system [16]. Abdullah et al. analyzed mul-
tiple attacks against audio CAPTCHAS to propose a new
mechanism that is both intelligible and hard to automat-
ically transcribe [17]. As a result, modern CAPTCHAS
incorporate more sophisticated noise patterns, adversar-
ial distortions, and time-based challenge-response mech-
anisms to maintain their efficacy against automated at-
tacks [18].

Several research efforts specifically targeted Google
reCAPTCHA, demonstrating its vulnerabilities to both
traditional ASR models and modern deep learning frame-
works [11], [12]. They provided critical insights into the
ongoing arms race between CAPTCHA designers and
attackers, emphasizing the need for more resilient veri-
fication techniques.

Solanki et al. [19] highlighted that Google re-
CAPTCHA v2 audio challenges evolve over time as
Google adapts its challenges to counter new attacker tools.
Consequently, techniques developed in earlier research
may no longer achieve the same accuracy on current audio
CAPTCHA:s.

Our study empirically evaluates and compares the
effectiveness of various state-of-the-art ASR models in
bypassing the latest versions of Google reCAPTCHA v2
audio challenges.

3. Methodology

This section presents our methodology to by-
pass Google v2 audio reCAPTCHA. We selected this
CAPTCHA system for testing because of its widespread
adoption, which makes it a relevant target for evaluating
the vulnerabilities in current audio CAPTCHA systems.
We can also apply the methodology to other systems if
audio files are available. The bypass pipeline consists
of several steps: 1) setting up a controlled testing en-
vironment, 2) collecting the CAPTCHA audio files, 3)
transcribing the audio challenge using ASR models, and
4) validating the transcriptions by submitting them to the
CAPTCHA system in real time.

3.1. Local Test Environment

To systematically test the bypass approach, we devel-
oped a local web page integrating Google reCAPTCHA
v2 [2]. This setup facilitates extensive testing without
triggering alarms on external websites due to automated

attempts, while ensuring that the CAPTCHA operates in
a standard manner. The page is served via a local Python
HTTP server.

Even when operating in a local environment, our
server forwards all verification requests to Google, en-
suring that the CAPTCHA difficulty and countermeasures
(e.g., bot detection, rate limiting) are consistent with those
encountered in real-world scenarios. The traffic sent to
Google’s servers contributes only marginally to the overall
load on their infrastructure.

3.2. Retrieving CAPTCHA Audio Files

To automate CAPTCHA resolution, we extract the
audio files directly from the CAPTCHA challenge. Our
network traffic analysis revealed that the browser down-
loads an MP3 file with each call to the Google API, storing
it in the cache. To streamline this process, we developed
a Python script that identifies recently downloaded files
by detecting the MP3 signature—since most cache files
lack an extension—and extracts the MP3 file for further
processing with the selected models. The collected audio
files have a length between 4 and 5.5 seconds, with an
average of 4.5 seconds.

3.3. Selection and Analysis of the Tested Models

After conducting extensive research, we selected six
Automatic Speech Recognition (ASR) models for testing
and comparisons:

« Google Speech-to-Text [20]: A cloud-based pro-
prietary ASR service developed by Google.

e Azure Al Speech (Microsoft) [21]: a distributed
computing speech-to-text model with multilingual
support.

o« Speech to Text API Nova-3 (Deepgram) [22]:
A popular cloud-based API offering real-time and
batch transcription.

« Whisper with two different model sizes: tiny.en
and base.en (OpenAl) [23]: state-of-the-art, open-
source ASR models capable of local execution.

o DeepSpeech (Mozilla) [24]: A free and open-
source ASR model trained on large-scale datasets.

We initially selected the Google Speech-to-Text model
to demonstrate that Google’s own tools can be leveraged
to bypass its security measures. Since this cloud-based
model requires sending audio files to its API, latency and
cost become critical factors. To broaden our comparison,
we also included Azure AI Speech from Microsoft and
Nova-3, a service known for its efficiency.

For locally run models, we selected Whisper—whose
popularity has been boosted by ChatGPT—and evaluated
two versions with different model sizes. This approach
eliminates the need for external API calls and associated
costs, except during initial configuration. We also included
DeepSpeech to assess whether a free, open-source model
developed by the community could compete with propri-
etary solutions from major technology companies.

3.4. Audio Format Preprocessing and Transcrip-
tion

Since some ASR models require a specific format, we
transform MP3 files to WAV to ensure compatibility and



then, use either cloud-based ASR processing or locally
executed models.

For the Google Speech-to-Text API, Azure Al speech,
and Nova-3, the bypassing process involves sending the
file to the appropriate API endpoint for processing. We
then retrieve the transcription results and promptly submit
them to Google in real time to solve the CAPTCHA, while
also saving them for further analysis.

Locally executed models such as Whisper and Deep-
Speech operate entirely offline, enabling unlimited tran-
scription of audio files without network dependency,
which offers enhanced flexibility and efficiency when han-
dling large datasets. Although these models process data
locally—eliminating API rate limits and reducing the risk
of being blacklisted—the final CAPTCHA verification
still requires submission to Google, as is the case with
cloud-based models.

After obtaining the transcriptions from all six models,
we compare their outputs to assess overall accuracy. This
comparative analysis identifies the most reliable models
for bypassing audio CAPTCHAs, taking into account
factors such as accuracy, speed, cost, and resource usage
(CPU and memory).

3.5. Evaluation Setup and Comparison Criteria

We perform all tests on a laptop with 8 GB of RAM
and an Intel® Core™ i5-1035G1 CPU at 1.00 GHz.
This configuration serves as a baseline for assessing the
computation time and model performance.

Each model had to solve one hundred CAPTCHA
challenges within the environment described in Sec-
tion 3.1. Overall, we retrieved six hundred reCaptcha
audio files for evaluation.

Note that challenges cannot be replayed for re-
evaluation once solved, and the CAPTCHA validation al-
gorithm may not require an exact word-for-word transcrip-
tion due to undisclosed provider-specific criteria. Conse-
quently, we cannot test all models on identical audio files;
instead, our evaluation relies on processing a substantial
number of samples (100 per model) to ensure statistically
significant and reliable results.

For each challenge, we obtain the transcription re-
sults and measure the computation time, as well as CPU
and memory usage. Accuracy evaluates the capacity of a
model to solve CAPTCHA successfully and is arguably
the most critical factor for automation. If a model fails
to generate correct transcriptions, the overall approach
becomes ineffective. Efficiency assesses the processing
speed of audio files. The computation time is partic-
ularly relevant for large-scale implementations and the
processing speed impacts the ease of use of the model—if
obtaining the results takes longer than manually listening
to the audio file, the solution loses its appeal.

As noted in Section 3.4, each model has specific audio
format requirements, requiring additional processing time
for format conversion. To ensure fair computation time
comparisons, we only record the time taken to load the
model and perform transcription, except for the cloud
models, for which computation occurs remotely. For them,
the measured time includes the time interval between
sending the request to the API and the reception of the

TABLE 1. TRANSCRIPTION ACCURACY, COMPUTATION TIME, CPU
AND MEMORY USAGE FOR LOCAL MODELS.

Whisper Deepspeech

tiny.en base.en
Accuracy 97% 93% 59%
Time 1.16 s 229 s 2.26s
CPU usage 28.41% 30.86% 14.13%
Memory usage  152.50 MB  238.47 MB 25.36 MB

TABLE 2. TRANSCRIPTION ACCURACY, COMPUTATION TIME, AND
OPERATIONAL COST OF CLOUD-BASED MODELS.

Azure
Speech-to-text ~ Deepgram AI Speech
Accuracy 99% 99% 99%
Time 1.85s 2.57 s 1.29 s
Cost for $0.50 $0.18 $0.28

1000 attempts

the response, which depends on network performance. Our
tests ran over a high capacity university network.

4. Evaluation Results

This section presents the evaluation results of the
chosen models based on the proposed methodology and
discusses the differences observed in the performance of
the models.

We separated the models into two categories: local and
cloud-based models. For local models, we evaluate their
accuracy, efficiency, CPU and memory usage, whereas the
cloud-based models are assessed according to accuracy,
efficiency, and operational costs. Tables 1 and 2 present
the overall results of the evaluation.

4.1. Local Models

Whisper models (tiny.en and base.en) obtain high
accuracy (97% and 93%, respectively), but they de-
mand considerable CPU and memory resources. Although
base.en has more parameters than tiny.en—leading one to
expect better performance—it does not outperform tiny.en.
One possible explanation is that the short duration of the
audio files (around 4 seconds) may not fully leverage the
increased capacity of the base model. Instead, the simpler
architecture of the tiny model could be better suited
for capturing the essential features needed for accurate
transcription in this specific task.

For local models, CPU and memory usage might
be important considerations for large-scale deployments,
particularly for attackers who need to efficiently process
numerous challenges in real time.

DeepSpeech exhibits a notably lower accuracy of 59%,
which is its primary limitation, although its lower resource
requirements may enable more scalable deployments. This
difference in accuracy can be explained by the dispari-
ties in the audio training datasets: Whisper models were
trained on 680,000 hours of data,! while DeepSpeech on
only 2,500 hours [25].

1. https://openai.com/index/whisper/



In terms of efficiency, Whisper models process audio
faster than DeepSpeech, making them preferable for real-
time applications. Despite its lower accuracy, the pro-
cessing time of DeepSpeech is comparable to Whisper
base.en but lacks the same performance benefits, limiting
its practicality for CAPTCHA solving.

4.2. Cloud-Based Models

Google Speech-to-Text, Deepgram, and Azure Al
Speech achieve high accuracy (99%) with Deepgram
standing out as the most cost-effective for large-scale
use. Azure Al Speech offers the fastest processing time,
making it ideal for speed-critical tasks, while Google
Speech-to-Text remains competitive with a slightly higher
cost. As explained in Section 3.1, since the audio chal-
lenge lasts 4.5 seconds on average, our results show that
automatic CAPTCHA solving with ASR is still faster than
completing the task manually.

For cloud-based models, the operational cost might be
an important consideration. Unlike local models, which
primarily rely on available system resources, cloud-based
processing incurs API calls, data processing time, and
bandwidth usage. A model with high accuracy but an
excessive cost may not be viable for large-scale deploy-
ments.

Deepgram, although slower, remains a strong con-
tender because of its low operational cost and high accu-
racy ($0.18 for 1000 API calls). The choice between these
models depends on the trade-off involving the processing
time and the cost.

4.3. Implications

The results of this study demonstrate that current audio
CAPTCHA systems, designed to differentiate between
human users and automated systems, can be effectively
bypassed using advanced Automatic Speech Recognition
(ASR) models. There are several important implications
of the results:

Security Vulnerabilities: The high accuracy rates
achieved by both local and cloud-based ASR models
indicate that these systems can reliably transcribe au-
dio CAPTCHAs, undermining their intended purpose.
The result exposes a significant security vulnerability, as
malicious actors could exploit the models to automate
CAPTCHA solving, thereby bypassing security measures
designed to protect online services from automated abuse.

Potential for Abuse: The ability to bypass audio
CAPTCHAs using ASR models could be misused in var-
ious ways. For instance, attackers could automate the cre-
ation of fake accounts, perform credential stuffing attacks,
or scrape protected content from websites, or identify
websites with specific vulnerabilities. This could lead to
increased spam, fraud, exploitation of vulnerable websites
for phishing or malware distribution, and other malicious
activities, thereby threatening the integrity and security of
online platforms.

Some solutions, like automated bot detection
CAPTCHA, already exist and require only a single click to
respond to challenges, improving accessibility. However,
according to DataDome Blog [26], a bot protection
service for websites, solutions like reCAPTCHA v3 are

deployed ten times less frequently than reCAPTCHA
v2. Furthermore, Hossen and Hei in [27] designed an
audio adversarial CAPTCHA specifically to counter
ASR systems while maintaining good usability for
humans. Their research demonstrated a maximum attack
success rate of 17.6% for a tested speech-to-text service,
highlighting its potential resilience against automated
transcription attacks.

5. Ethics and Reproducibility

This study examines the misuse of ASR and speech-
to-text technologies to bypass audio CAPTCHAs. While
highlighting these vulnerabilities is crucial for improving
system robustness, it is equally important to mitigate the
risk of enabling malicious activities.

To prevent misuse of our findings, we intentionally
omitted specific implementation details—such as code
and configurations for automated CAPTCHA resolution—
ensuring our insights serve academic and security pur-
poses only.

All experiments were conducted in a controlled envi-
ronment (Section 3.1) to prevent any unintended effects
on production systems. Although the CAPTCHA page is
hosted locally, requests and validation attempts are still
sent to Google servers, imposing a negligible load.

All related audio files and results will be publicly
shared after publication, and the complete code will be
available to vetted researchers contacting us via the pro-
vided email addresses.

6. Conclusion

In this paper, we demonstrate that audio CAPTCHAs
can be bypassed using ASR transcription models, enabling
automated systems to solve challenges intended to distin-
guish humans from bots. Our findings reveal that even
individuals with limited technical expertise can leverage
readily available tools to compromise audio CAPTCHA
systems with a high degree of accuracy.

To evaluate the effectiveness of these bypass tech-
niques, we conducted extensive experiments using tran-
scription models such as Whisper and DeepSpeech, along-
side cloud-based services including Google Speech-to-
Text, Deepgram, and Azure AI Speech. The results
demonstrate a significant capacity to accurately solve au-
dio CAPTCHA challenges, highlighting a serious threat to
the robustness of this security mechanism. Although audio
CAPTCHASs currently provide valuable accessibility for
visually impaired users, they are increasingly vulnerable
in the era of modern Al advancements.

These results underscore the need to transition from
traditional voice CAPTCHAs to more advanced sys-
tems that minimize or eliminate user interaction. Mod-
ern alternatives—such as reCAPTCHA v3, invisible
CAPTCHAs, and behavioral analysis-based solutions—
offer robust protection against automated attacks without
compromising user experience. The main challenge now
is to incentivize administrators to replace vulnerable voice
CAPTCHAs with these automated, next-generation solu-
tions.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

(14]

L. von Ahn et al., “Telling Humans and Computers Apart Auto-
matically,” Commun. ACM, vol. 47, no. 2, Feb. 2004.

Google Security, “reCaptcha v2,” https://developers.google.com/-
recaptcha/intro.

BuiltWith, “CAPTCHA Usage Distribution in the Top 1 Million
Sites,” https://trends.builtwith.com/widgets/captcha.

W. Xu, J. Chen, Y. Li, Q. Zhang, and Z. Wang, “Benchmarking
cloud-based speech-to-text services in noisy environments,” arXiv,
2021. [Online]. Available: https://arxiv.org/abs/2105.03409

J. Min and L. Wang, “Integration of large language models into
speech recognition systems,” in arXiv, 2023. [Online]. Available:
https://arxiv.org/abs/2307.06530

L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha:
Using hard ai problems for security,” Advances in Cryptology —
EUROCRYPT 2003, pp. 294-311, 2003.

R. Mistry et al., “DeCaptcha: Cracking CAPTCHA using Deep
Learning Techniques,” in IEEE ISCON, October 2021, pp. 1-6.

Y. Gao et al., “Research on the Security of Visual Reasoning
CAPTCHA,” in 30th USENIX Security, Aug. 2021, pp. 3291-3308.

E. Bursztein, S. Martin, and J. C. Mitchell, “Text-based captcha
strengths and weaknesses,” Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security (CCS), pp. 125-
138, 2011.

H. Gao, J. Yan, F. Liu, Z. Tu, and C. Su, “A robust captcha design
based on multi-label image classification,” Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 240-248, 2013.

A. Searles et al., “An Empirical Study & Evaluation of Modern
CAPTCHAS,” in 32nd USENIX Security, Aug. 2023.

A. Plesner et al., “Breaking reCAPTCHAv2,” in COMPSAC.
IEEE, July 2024, pp. 1047-1056.

K. Bock, A. Klein, and F. Breitinger, “Breaking audio captchas: An
overview and a novel attack approach,” in Proceedings of the 12th
International Conference on Availability, Reliability and Security
(ARES). ACM, 2017, pp. 1-10.

A. Nguyen, V. Nguyen, S. Tran, and B. Le, “Breaking recaptcha:
Attacking the google’s audio captcha,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 342-349, 2014.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

Y. Qin, Y. Wang, Y. Li, and J. Zhang, “Adversarial exam-
ples for audio captcha security enhancement,” arXiv preprint
arXiv:2203.02735, 2022.

I. Hossen and X. Hei, “aaeCAPTCHA: The Design and Implemen-
tation of Audio Adversarial CAPTCHA,” in 2022 IEEE Euro S&P,
June 2022, pp. 430-447.

H. Abdullah er al., “Attacks as Defenses: Designing Robust Audio
CAPTCHAs Using Attacks on Automatic Speech Recognition
Systems,” in NDSS, 2023.

R. Jiang et al., “Diff-CAPTCHA: An Image-based CAPTCHA with
Security Enhanced by Denoising Diffusion Model,” CoRR, vol.
abs/2308.08367, 2023.

S. Solanki, G. Krishnan, V. Sampath, and J. Polakis, “In
(cyber)space bots can hear you speak: Breaking audio captchas
using OTS speech recognition,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, AlSec@CCS
2017, Dallas, TX, USA, November 3, 2017, B. Thuraisingham,
B. Biggio, D. M. Freeman, B. Miller, and A. Sinha, Eds.
ACM, 2017, pp. 69-80. [Online]. Available: https://doi.org/10.
1145/3128572.3140443

Google Cloud, “Speech-to-Text API,” https://cloud.google.com/-
speech-to-text/docs.

Microsoft, “Azure Al Speech,” https://azure.microsoft.com/fr-fr/-
products/ai-services/ai-speech/.

Deepgram, “Deepgram Speech to Text APL”

https://deepgram.com/product/speech-to-text.

A. Radford et al., “Robust Speech Recognition via Large-Scale
Weak Supervision,” in Proc. ICML, 2023.

A.Y. Hannun ez al., “Deep Speech: Scaling up end-to-end speech
recognition,” CoRR, vol. abs/1412.5567, 2014.

R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer,
R. Morais, L. Saunders, F. M. Tyers, and G. Weber, “Common
voice: A massively-multilingual speech corpus,” arXiv preprint
arXiv:1912.06670, 2019.

DataDome Blog, “ReCAPTCHA v2 vs. v3: Efficient bot
protection? [2024 Update],” https://datadome.co/guides/captcha/-
recaptchav2-recaptchav3-efficient-bot-protection/.

I. Hossen and X. Hei, “aaecaptcha: The design and implementation
of audio adversarial captcha,” in 2022 IEEE 7th European Sympo-
sium on Security and Privacy (EuroS&P), 2022, pp. 430-447.


https://arxiv.org/abs/2105.03409
https://arxiv.org/abs/2307.06530
https://doi.org/10.1145/3128572.3140443
https://doi.org/10.1145/3128572.3140443

	Introduction
	Background and Related Work
	Methodology
	Local Test Environment
	Retrieving CAPTCHA Audio Files
	Selection and Analysis of the Tested Models
	Audio Format Preprocessing and Transcription
	Evaluation Setup and Comparison Criteria

	Evaluation Results
	Local Models
	Cloud-Based Models
	Implications

	Ethics and Reproducibility
	Conclusion
	References

