
Introduction à la sécurité TP 3.5 - Injections SQL

Maciej Korczynski & Simon Fernandez

Novembre 2022

Objectives
• Deploy a simple PHP webpage
• Deploy a simple MySQL database
• Query the database with PHP
• Discover the basic principles of an SQL Injection attack and simple remediation methods

Setting up the target website
Installation
On your target VM, install MySQL and the packages needed for Apache2 to handle PHP:

$ apt install mysql-server php libapache2-mod-php php-mysql

• Enable PHP for Apache2 with the a2enmod command.

MySQL setup
Configuration

MySQL is a simple yet powerful database system. It is available on almost all OS. By default, the databases are
only served on localhost, but this can be configured in /etc/mysql/mysql.conf.d/mysqld.cnf.

To interact with a MySQL database, we need to connect as a specific user. The system root user can connect to
MySQL without any password and access all the databases, but for security reasons, we will create a new MySQL
user, with a password.

• Using the CREATE USER command, create a new user called site, with a strong password.

By default, this user will only have the permissions to read data. Give it write permissions using the GRANT ALL
PRIVILEGES ON * . * TO 'site'@'localhost'; command. You can now log out of mysql, and log again as site.

Architecture

MySQL stores data in objects called databases. Each database can contain multiple tables. Each table is made of
entries.

• Create a website database. It will contain all the tables used by our simple website.

• Inside this database, create a users table that will store usernames and passwords (in clear-text). Then
manually fill it with a few entries.

PHP
PHP is a programming language used to have server-side dynamic pages, meaning that the webpages are not static,
and are dynamicaly generated on the server when a client requests them. This allows HTML pages to contain
dynamic data, like the content of a database for example.

1

If a webpage ending in .php is queried, Apache will automaticaly check if it contains PHP blocks to execute them
and build the HTML page before serving it to the client. For example, if the hello.php file contains :

<html>
<body>

<h1>My first PHP page</h1>

<?php
echo "Hello World!";

?>

</body>
</html>

when a user queries this page, Apache will detect the <?php ... ?> block, execute it like any programming language,
and all outputs are inserted in the page. The resulting page that will be served to the client becomes :

<html>
<body>

<h1>My first PHP page</h1>

Hello World!

</body>
</html>

Forms

HTML pages can contain fields, sliders, checkboxes, to build forms, allowing the user to send data to the server with
a POST request.

• What is the difference between a GET and a POST request ?

The content of the POST request can then be processed by PHP to build a webpage depending on the content of
the fields.

• Using the <form> block, build a small webpage called index.html allowing users to send a user and a password
to a login.php page (this page will be built later on).

MySQL queries from PHP

The PHP language can query MySQL databases to get data. This is not the case by default but the php-mysql
package that we installed in the beginning will give us all the needed tools to do so.

The following PHP code will build a simple query to a local MySQL database, to check if it contains a given
username and password :

// The parameters to connect to the database
$servername = "localhost";
$username = "site";
$password = "mypassword";
$dbname = "website";

// Create connection to the database
$conn = new mysqli($servername, $username, $password, $dbname);

// Check if the connection worked
if ($conn->connect_error) {

die("Connection failed: " . $conn->connect_error);

2

}

// Build a SQL request from the parameters of the POST request
// SELECT * FROM users WHERE username="bob" AND password="azerty"
$sql = "SELECT * FROM users

WHERE username=\"" . $_POST["username"] .
"\" AND password=\"" . $_POST["password"] . "\"";

// Send the query to the database and get the result
$result = $conn -> query($sql);

// Check if some entries matched
if ($result->num_rows > 0) {

// If at least one entry matches inside the table
// Print all the entries that match
while ($user = $result->fetch_assoc()){

// Print the name of the user
echo "Valid user : " . $user["username"] .

" - " . $user["password"] . "
";
}

} else {
// If no entries were returned, this combination of username
// and password do not exist, so the login is denied.
echo "Invalid username or password";

}

// Close the connection to the database
$conn->close();

• Write a login.php page containing this code and the HTML needed to display the login result to the user
• Deploy your simple website so that your client VM can query the webpage, fill forms and get the results (go

back to TP1 if you forgot how to do it)
• Check if the usernames and passwords that you put in your users table work well.

SQL Injection
SQL is a powerful tool to manage databases, but it can have flaws if it is not deployed with care.

SQL injections are a type of attack that use the fact that PHP (or any programming language) must craft a SQL
query as a generic string, and then send this string to the server. So if someone can modify the query string and
inject malicious code, the effects of the query can be unexpected.

• What would append if the user set the username field in the form to be " ? Why ? What query would be sent
to MySQL ? (don’t hesitate to check apache logs or use PHP to print the query before it is sent)

• What could an attacker write in the username and password fields to get all the users and passwords in the
table ?

• What else could an attacker do ?
• How could we fix our code to avoid those security threats ?

3

	Objectives
	Setting up the target website
	Installation
	MySQL setup
	Configuration
	Architecture

	PHP
	Forms
	MySQL queries from PHP

	SQL Injection

